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Complex Modes in Lossless Shielded
Microstrip Lines

WEI-XU HUANG anp TATSUO ITOH, FELLOW, IEEE

Abstract —Possible existence of complex modes is investigated in loss-
less shielded microstrip lines. The analysis is based on the singular integral
equation approach, which provides good convergence properties. Accurate
numerical results are obtained by using a 10X 10 matrix equation.

I. INTRODUCTION

Recently, a number of investigations of complex modes in
lossless waveguiding structures have been reported [1]-[4]. The
lossless shielded guide with a dielectric insert may or may not
support complex modes, depending on the structural parameters
and the frequency range. It has been shown that even though the
complex modes are not strongly excited, they greatly affect the
modal energy distribution at both sides of the discontinuity.
Hence, in the millimeter-wave device design, the analysis of
complex modes is of great importance.

In Section II of this paper, a brief review of the singular
integral equation method is presented for formulation of the
problem of the shielded microstrip line (Fig. 1). Since the details
are given in [5], only the key steps are provided. In the singular
integral equation approach, the singular behavior at the edges of
the strip is incorporated so that the convergence is accelerated.
Instead of a large matrix in many other methods, only a small
matrix needs to be treated in the singular integral equation
approach.

In Section 1III, the method is used for the analysis of three
lossless shielded microstrip line structures with different permit-
tivities in the substrate. To confirm the validity of the method,
results are compared with existing data for propagating modes
[6]. The complex modes have been found in the moderate and
high permittivity structures.

II. FORMULATION

The cross section of the lossless shiclded microstrip line is
shown in Fig. 1. The structure consists of a conducting strip
placed on a dielectric substrate. The TM and TE field compo-
nents in regions 1 and 2 can be derived from the scalar potentials
P and ¢!, the subscript : =1,2 designating the region 1 or 2.
The scaiar potentials satisfy the two-dimensional Helmholtz
equations as well as the requirements that the tangential electric
fields vanish on the wavegnide and that the tangential magnetic
fields vanish on the plane of symmetry x = 0. It is appropriate to
write

o0
Y=Y A sinhallycos k,x

n=1

(1a)

o0
Y=Y B! sinha?(h— y)cosk,x

n=1

(1b)

o]
=Y AMcoshalysink,x

n=1

(1)
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Fig 1. Cross section of shielded microstrip hine.
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where /Ac” =(n—1/2)a/L and k, = wy/e, 1, the free-space wave-
number. B is the propagation constant, and the superscripts (e)
and (h) are associated with E(TM) and H(TE) fields, respec-
tively. €, and p are the permittivity and permeability of vacuum
and ¢, is thegrelative dielectric constant of the substrate.

By applying the continuity condition and the boundary condi-
tion equations on the superposed TE,TM hybrid fields and
transforming these boundary condition equations into an aux-
iliary set of equations [5], an infinite set of equations is obtained:

0 . 0 _
Z arnpAln(c)+ Z bnpAu(h)=0 p=1’27 (2a)
m= n=1
00 _ ) B
Z (,‘”“/A/“(e) + Z dﬂl/An(h)=O q=1’2’. o (2b)
m=1 n=1
where a,,.b,.¢c,.,d,, (see [5]) have the property that they de-

crease extremely rapidly with an increasing value of m, so that
the associated matrix can be truncated to a relatively small size.

The solution of the determinant of (2) equated to zero yields
the desired value f3:

det[ 4] =0. (3)

The elements of the matrix [4], 4,,, b,,, ¢,,» and d,,, depend on
the unknown propagation constant 8. If only the real B? is
assumed, no complex modes can be found. During the search for
the eigenvalue 8° on the real axis, the real solution for B? may
disappear. Hence the zeros of det[ 4] must be looked for in the
complex plane rather than on the real axis of 8°. The complex 8

will be found if complex modes exist.
III. RESULTS AND ANALYSIS

A. Higher Order Modes and Convergence

The roots of the characteristic equation for the propagation
constant 8 can be calculated from (3). The propagation constant
B depends on the structural and operating parameters of the
shielded microstrip line. As expected, the number of higher order
propagating modes increases with an increasing frequency.
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Fig. 2. Propagation constant y =« + jB normalized with k, = €gfig VErsus

frequency. Parameters: ¢, = 2.65, L = 6.35 mm, = 0.635 mm, o =1.27 mm,
h=12.7 mm.
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Fig. 3. Propagation constant y = a+ j8 normalized with ko =yfegpo versus
frequency. Parameters: €, =8.875, L =6.35 mm, 7= 0.635 mm, d=1.27
mm, 7=12.7 mm.
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Figs. 2, 3, and 4 show the normalized propagation constant
v/ko=a/ky+ jB/k, versus frequency. In the nonpropagating
range, v/k, = a/k, i$ plotted in the opposite direction.

By choosing a 10X 10 matrix equation, the first five higher
order modes in addition to the dominant mode have been ob-
tained. In the propagating range (8 > 0, above cutoff), the dis-
persion characteristics have been compared with Yamashita’s
results [6] for the same structural parameters (see Fig. 3). The
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TABLE 1
PROPAGATION CONSTANT OF SIX MODES FOR THE TwWoO
DIFFERENT MATRICES -

Matrix| Mode 1 Mode 2 Mode 3 Mede 4 Mede S Mode 6

10x10(2.7089,0.)[¢1.1029,0.) |(0.70499,0.)}(0.59408,0.)|(0.,0.55270){(0.15350,0.77168)
12x12[(2.7086,0.) |(1.1031,0.) |(0.72499,0.) [(0.59418,0.)[(0.,0.55274)/(0.15345,0.77162)

Structure parameters: same as Fig, 2.

results calculated by the two different methods are indis-
tinguishable (shown in the same lines). The accuracy of eigen-
value B has been checked by increasing the matrix size to 12 x12,
and is found that the error is below 0.1 percent. Comparison of
the results by the two matrix sizes is given in Table I for 20 GHz.
From this comparison, it is concluded that the 10 X 10 matrix is
large enough for accurate eigenvalue calculation.

B. Complex Modes and Mode Conversion

For a low permittivity (e, = 2.65, Fig. 2), an ordinary disper-
sion behavior is obtained, and no complex modes have been
found. For a moderately high permittivity (e, = 8.875, Fig. 3),
however, between 17.6 GHz and 20.6 GHz indicated by the
dashed curve, the eigenvalue solution leads to complex propa-
gation constants y = a =+ jB, in spite of the assumption that the
shielded microstrip line is lossless. The complex conjugate pair
has a physical meaning. Each of the modes in the pair propagates
in the opposite directions along the axis. However, the total
power transmitted by the pair of complex waves is zero.

With a high permittivity (e, = 20, Fig. 4), complex modes are
also found in the two ranges, 11.6 GHz-17.75 GHz and 14.45
GHz-14.77 GHz indicated by the dashed curve.

The mode conversion occurs when the frequency is changed.
As the frequency is decreased, the evanescent modes degenerate
into a pair of complex waves propagating in the +z and —z
directions with jB, and the attenuation constant is a. For a still
lower frequency, the complex modes split into two evanescent
modes. In Fig. 3, complex modes exist only in a certain frequency
range. For different structural parameters, such as a different
dielectric permittivity €,, complex modes may or may not exist.
At a low ¢, in Fig. 2, no complex modes have been found. In
summary, the evanescent modes become complex modes within
one or more ranges of certain structural parameters (e.g., the
permittivity €,) at a given frequency or, alternatively, within one
or more frequency ranges at given structural parameters.

IV. CoNcLUSIONS

An analysis of the guided modes in a lossless shielded micro-
strip line has been presented as to the possible existence of
complex modes.  The analysis is based on the singular integral
equation method. By means of this method, propagation con-
stants of the higher order modes (including complex modes) have
been calculated. Complex modes exist only in a certain frequency
range. At a certain frequency, two evanescent modes are trans-
formed to a pair of complex modes. As the frequency is increased
(or decreased), the pair of complex modes split and return to two
evanescent modes. These phenomena are the same as those in
finlines and shielded dielectric image guides reported recently
[1}-[4].

We need to mention here that we reported the existence of
complex modes at the given structural parameters and frequen-
cies. Before a more general statement on the conditions for
existence of complex modes is made, it is necessary to perform
more extensive numerical calculations on a number of structures
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with differential structural parameters. An alternative approach
would be to find the field distributions of these complex modes
so that physical insight can be gained for their existence. These
efforts are planned in the near future.
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