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Complex Modes in Lossless Shielded

Microstrip Lines

WEI-XU HUANG AND TATSUO ITOH, FELLOW, IEEE

Ab.vtruct — Possible existence of complex modes is investigated in loss-

Iess shielded microstrip lines. The analysis is based on the singular integral

eqwation appr~acht which provides good convergence profrefiies. Accurate
numerical results are obtained by using a 10X 10 matrix equation.

I. INTRODUCTION

Recently, a number of investigations of complex modes in

lossless waveguiding structures have been reported [1]-[4]. The

lossless shielded guide with a dielectric insert may or may not

support complex modes, depending on the structural parameters

and the frequency range. It has been shown that even though the

complex modes are not strongly excited, they greatly affect the

modal energy distribution at both sides of the discontinuity.

Hence, in the millimeter-wave device design, the analysis of

complex modes is of great importance.

In Section II of this paper, a brief review of the singular

integral equation method is presented for formulation of the

problem of the shielded microstrip line (Fig. 1). Since the details

are given in [5], only the key steps are provided. In the singular

integral equation approach, the singular behavior at the edges of

the strip is incorporated so that the convergence is accelerated.

Instead of a large matrix in many other methods, only a small

matrix needs to be treated in the singular integraf equation

approach.

In Section III, the method is used for the analysis of three

lossless shielded microstrip line structures with different permit-

tivities in the substrate. To confirm the validity of the method,

results are compared with existing data for propagating modes

[6]. The complex modes have been found in the moderate and

high permittivity structures.

II. FORMULATION

The cross section of the lossless shielded microsttip line is

shown in Fig. 1. The structure consists of a conducting strip

placed on a dielectric substrate. The TM and TE field compo-

nents in regions 1 and 2 can be derived from the scalar potentials

+:”) and ~~” ), the subscript z =1,2 designating the region 1 or 2.

The scaiar potentials satisfy the two-dimensional Helmholtz

equations as well as the requirements that the tangential electric

fields vanish on the waveguide and that the tangential magnetic

fields vanish on the plane of symmetry x = O. It is appropriate to

write

~i”) = ~ ~~~) sinha~~)ycm L,,x (la)

rt=l

+!’ = ~ l?!< ’’sinha~~)(h -Y) COSL,,X (lb)

11=1

+\”) = f ~~~)cosha!j).~sin ~,,x (lC)

,,=1
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where ~,, = ( n – 1/2) w/L and kc, = w cop, the free-space wave-

number. /3 is the propagation constant, and the superscripts (e)

and ( h ) are associated with -E(TM) and II(TE) fields, respec-

tively. cfl’ and p are the permittivity and permeability of vacuum

and c, is th~relative dielectric constant of the substrate.

By applying the continuity condition and the boundary condi-

tion equations on the superposed TE, TM hybrid fields and

transforming these boundary condition equations into an aux-

iliary set of equations [5], an infinite set of equations is obtained:

*,=1 ~=1 ‘

~ %q~,, ‘c)+ i’ 4,,4,(”)= O
~=l,z,... (2b)

m=l ~=1

where a,,,, b,,,, c,,,, d,,, (see [5]) have the property that they de-

crease extremely rapidly with an increasing value of m, so that

the associated matrix can be truncated to a relatively small size.

The solution of the determinant of (2) equated to zero yields

the desired value ~:

det[~] =0. (3)

The elements of the matrix [A], u,,,, b.,, c,,,, and d,),, depend on

the unknown propagation constant /3. If only the reaf /32 is

assumed, no complex modes can be found. During the search for

the eigenvalue ~ 2 on the real axis, the real solution for /32 may

disappear. Hence the zeros of det [A ] must be looked for in the

complex plane rather than on the real axis of ~~. The complex ~

will be found if complex modes exist.

III. RESULTS AND ANALYSIS

A. Higher Order Modes and Convergence

The roots of the characteristic equation for the propagation

constant /3 can be calculated from (3). The propagation constant

/3 depends on the structural and operating parameters of the

shielded microstrip line, As expected, the number of higher order

propagating modes increases with an increasing frequency.
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Fig. 2. Propagation constant y = a + )fi normalized with k. = @ versus

frcqucmy. Parameters: c, = 2.65, 1. = 6.35 mm, t = 0.63S mm, d =1.27 mm,

k = 12.7 mm.
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rrcqmmcy. Pammctcrs: c, = 8.875, L = 6.35 mm, r = 0.635 mm, d=l.27

mm, h = 12.7 mm.
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Propagation constant y = m + j~ tmrmalizcd with 1<<1= Cop,o versus
r

frequency, Pammctcrs: c, = 20, 1.= 6.35 mm, r = 0.635 mm. d = 1.27 mm.

/1 = 12.7 mm.

Figs. 2, 3, and 4 show the normalized propagation constant

y/k~, = a/kc) + ,j~/ko versus frequency. In the nonpropagating

range, y/ k~l = a /k(l is plotted in the opposite direction.

By choosing a 10X 10 matrix equation, the first five higher

order modes in addition to the dominant mode have been ob-

tained. In the propagating range (~ >0, above cutoff), the dis-

persion characteristics have been compared with Yamashita’s

results [6] for the same structural parameters (see Fig. 3). The

TABLE I

PROPAGATION cONS’lAN~ 01 SIX MO1)ES FOR THE TWO

I)IFF:!{ENT v A~“,cf S., >,,., .. .

I I

Mat,). Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

10X1O (2.7089 ,0.) (,,,~zg,~,) (0,70499 ,0,) (0.5940 !3,0,) (o, ,o,55*70) (~,, 535,3,0,77, G*)

12x12 (2 7086,0.) (1 103 I ,0) (O 72499,0.) (0.59418 ,0,) (0.,0.55274) (0.15345,077162)

Structure parameters: same as Fig, 2.

results calculated by the two different methods are indis-

tinguishable (shown in the same lines). The accuracy of eigen-

value /? has been checked by increasing the matrix size to 12x 12,

and is found that the error is below 0.1 percent. Comparison of

the results by the two matrix sizes is given in Table I for 20 GHz.

From this comparison, it is concluded that the 10x 10 matrix is

large enough for accurate eigenvalue calculation.

B. Complex Modes und Mode Conversion

For a low permittivity (c, = 2.65, Fig. 2), an ordinary disper-

sion behavior is obtained, and no complex modes have been

found. For a moderately high permittivity (<, = 8.875, Fig. 3),

however, between 17.6 GHz and 20.6 GHz indicated by the

dashed curve, the eigenvalue solution leads to complex propa-

gation constants y = a t j~, in spite of the assumption that the

shielded microstrip line is lossless. The complex conjugate pair

has a physical meaning. Each of the modes in the pair propagates

in the opposite directions along the axis. However, the total

power transmitted by the pair of complex waves is zero.

With a high permittivity (f, = 20, Fig. 4), complex modes are

also found in the two ranges, 11.6 GHz–17.75 GHz and 14.45

GHz– 14.77 GHz indicated by the dashed curve.

The mode conversion occurs when the frequency is changed.

As the frequency is decreased, the evanescent modes degenerate

into a pair of complex waves propagating in the + z and – z

directions with ,jj3, and the attenuation constant is a. For a still

lower frequency, the complex modes split into two evanescent

modes. In Fig. 3, complex modes exist only in a certain frequency

range. For different structural parameters, such as a different

dielectric permittivity c,, complex modes may or may not exist.

At a low (, in Fig. 2, no complex modes have been found. In

summary, the evanescent modes become complex modes within

one or more ranges of certain structural parameters (e.g., the

permittivity c,) at a given frequency or, alternatively, within one

or more frequency ranges at given structural parameters.

IV. CONCLUSIONS

An analysis of the guided modes in a lossless shielded micro-

strip line has been presented as to the possible existence of

complex modes. The analysis is based on the singular integral

equation method. By means of this method, propagation con-

stan ts of the higher order modes (including complex modes) have

been calculated. Complex modes exist only in a certain frequency

range. At a certain frequency, two evanescent modes are trans-

formed to a pair of complex modes. As the frequency is increased

(or decreased), the pair of complex modes split and return to two

evanescent modes. These phenomena are the same as those in

finlines and shielded dielectric image guides reported recently

[1]-[4].

We need to mention here that we reported the existence of

complex modes at the given structural parameters and frequen-

cies. Before a more general statement on the conditions for

existence of complex modes is made, it is necessary to perform

more extensive numerical calculations on a number of structures
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with differential structural parameters. An alternative approach

would be to find the field distributions of these complex modes

so that physicaf insight can be gained for their existence. These

efforts are planned in the near future.
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